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Lawrence Livermore National Laboratory, Livermore, CA 94551

ABSTRACT

The risk of CO, leakage from a deep storage reservoir into a shallow aquifer through a
fault is assessed and studied using physics-specific computer models. The hypothetical CO»
geological sequestration system is composed of three subsystems: a deep storage reservoir,
a fault in caprock, and a shallow aquifer, which are modeled respectively by considering
sub-domain-specific physics. Supercritical COs is injected into the reservoir subsystem with
uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and
injection rate (as a decision variable). The simulated pressure and COz/brine saturation
are connected to the fault-leakage model as a boundary condition. CO- and brine fluxes from
the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source
term. Uncertainties are propagated from the deep reservoir model, to the fault-leakage
model, and eventually to the geochemical model in the shallow aquifer, thus contributing
to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose
a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-
models. The risk profiles are defined and related to CO2 plume development for pH value
and total dissolved solids (TDS) below the EPA’s Maximum Contaminant Levels (MCL)
for drinking water quality. A global sensitivity analysis is conducted to select the most
sensitive parameters to the risk profiles. The uncertainty of pH- and TDS-defined aquifer
volume, which is impacted by COs and brine leakage, mainly results from the uncertainty
of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles
are developed as functions of all the decision variables and uncertain parameters in all three
subsystems.

Keywords: Uncertainty quantification; CO2 sequestration; risk assessment; reactive transport;

global sampling.

1. Introduction

Geological sequestration of CO» results in pressure build-up and geomechanical alterna-
tion in the storage reservoir. This increases the probability of re-activation of faults in the
caprock seal, and further elevates the risk of CO, and brine leakage into drinking-water
resources (Gasda et al., 2004; Bachu, 2008; Celia et al., 2008; Carroll et al., 2009; Apps et
al., 2010; Pruess, 2011; Siirila et al., 2012). Migration of CO» and brine towards a shallow
aquifer through various leakage pathways, such as abandoned wellbores, faults, and frac-
ture networks, is the primary concern for decreasing groundwater pH and an increasing
concentration of total dissolved solids (Carroll et al., 2009; Siirila et al., 2012), because the
decreased pH alters reaction chemistry and may lead to elevated concentrations of primary
contaminants and the increased TDS may yield an undrinkable water.

ICorresponding author: Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA
94551; (925) 422-1587; fax (925) 423-0153; sun4@llnl.gov
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As a result of rapid advances in numerical methods for modeling multi-phase reactive
transport and the availability of high-performance computers, physics-based process model-
ing has been widely used to address pressure buildup, storage capacity, injectivity, COs-rock
interactions, leakage pathways, and risks (Siirila et al., 2012). In the presence of vari-
ous sources of uncertainties, such as conceptual model uncertainties (including geological-
structure uncertainties), model parameter uncertainties, experimental- and field-data un-
certainties, there is a need to develop a rigorous and integrated framework for quantifying
the relationship between the uncertainty of ultimate risk profiles and all input uncertainties
from various physics-specific subsystems (Tartakovsky et al., 2011).

The risk assessment of a geological sequestration system includes various components,
such as reservoir management, evaluation of wellbore and caprock integrity, ensuring the pro-
tection of groundwater, and identification of geochemical impact on groundwater (Guthrie,
2009). Reservoir, fault- and wellbore-leakage, and geochemical subsystems have been mostly
modeled and studied separately (i.e., Zhou et al., 2008; Birkholzer et al., 2009; Viswanathan
et al., 2008; Carroll et al., 2009; Jordan et al., 2011; Yang et al., 2011; Zhang et al., 2011;
Buscheck et al., 2011, 2012). Rigorous uncertainty quantification of all sources in all sub-
systems and an overall risk assessment should be an integral process of the updated system
simulation and decision-making in CO4 geological sequestration. Subsystems may be simu-
lated by physics-specific sub-models. Recently, Remoroza et al. (2011) and Pan et al. (2011)
coupled wellbore and reservoir models to address the injection-dependent CO, leakage. To
integrate various sub-model results for uncertainty quantification and risk assessment of CO»
geological sequestration, scientists at Los Almos National Laboratory developed CO2-PENS
(Viswanathan et al., 2008; Stauffer et al., 2009; Jordan et al., 2011).

Uncertainties of a geologic system may result from the geologic structure and system pa-
rameters (Dai et al., 2007; Liu and Zhang, 2011; Keating et al., 2011; Refsgaard et al., 2011).
The uncertainty of geologic structure and physical processes is also called conceptual-model
uncertainty. Traditionally, deterministic models of reactive transport in the subsurface are
developed on a single, but presumably known geologic structure with uncertain system
properties (Clement et al., 1998; 2000; Sun et al., 2010; 2012b). Uncertainties of conceptual
models and system parameters have not been rigorously studied together as an integral part
for risk assessment of CO4 geological sequestration.

In this paper, we present a global sampling method to allocate sub-dimensions of uncertain
inputs to physics-specific sub-models and to quantify the uncertainty of the ultimate outputs,
such as the risk profiles defined as aquifer volume affected by CO» and brine leakage. Sample
points are generated to sufficiently cover the high-dimensional space of uncertainties. While
partial dimensions are used to describe heterogeneous aquifer structure and fault location,
others are used to reflect the variation of system parameters. Finally, the risk profiles,
relevant to CO2 and brine leakage, are assessed as functions of uncertain parameters and
decision variables.

2. Model Development and Solution Method

In this study, we focus on a geological sequestration system, which is composed of a
hypothetical storage reservoir, a hypothetical fault, and a shallow groundwater system to
represent the High Plains aquifer. As shown in Figure 1, a vertical fault cuts through
the overburden caprock and connects the reservoir and the shallow aquifer. Three process
models are developed to represent reservoir (RS), fault (FT), and aquifer (AQ) subsystems
respectively. Hereby, we use aquifer and reservoir to represent the shallow groundwater
formation and the deep saline formation for CO2 storage, respectively.
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Figure 1. Conceptual models. (a) Radially-symmetric reservoir model (RS), (b) Two-dimensional
fault leakage model (FT), and (c¢) Three-dimensional aquifer model (AQ).
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Figure 2. Flow chart of global sampling method of process modeling. Permeabilities of caprock,
reservoir, and lumped aquifer (zs, z10, 213), injection rate (x11), and fault distance from injection
center (z12), are uncertain inputs to reservoir subsystem (RS). Probabilistic outputs, pressure (P)
and CO. and brine saturation (S., Sp), and permeabilities of caprock and fault (xg, z9), are uncer-
tain inputs to fault-leakage subsystem (FT). CO- and brine fluxes (q., ¢»), heterogeneity-relevant
parameters (x1, x2, and x3), permeabilities of sand and clay in aquifer (z4, z5), longitudinal fault
length (xg), and brine molality (z7), are uncertain inputs to the aquifer subsystem (AQ).
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Table 1. Uncertain parameters and intervals.

Symbol Parameter Minimum Maximum Unit
x1 Sand volume fraction of aquifer 0.35 0.65 [-]
T2 Correlation length of clay in x 200.0 2500.0 [m)]
x3 Correlation length of clay in z 0.5 25.0 [m)]
24 Sand permeability of aquifer -13.0 -10.0  logio[m?]
Z5 Clay permeability of aquifer -18.0 -15.0  logio[m?]
T Fault length in x 100.0 1000.0 [m]
T7 Brine molality 0.3 3.0 [mol kg™!]
Ts Permeability of caprock -21.0 -16.0  logio[m?]
Tg Permeability of fault -16.0 -13.0  logio[m?]
Z10 Permeability of reservoir -14.0 -11.0  logio[m?]
211 Injection rate (decision variable) 50.0 100.0 [kg s™1]
Z12 Distance between injection well and fault 100.0 1000.0 [m)]
T13 Lumped permeability of aquifer 13 = 2124 + (1 — 1) w5 logyo[m?]

Uncertain parameters and their respective ranges needed to specify process models are
listed in Table 1 and the input-output structure of three subsystems is shown in Figure 2.
Ultimately, the risk profile, which is defined as aquifer volume affected by CO- and brine
leakage, is generated as a function of uncertain parameters and decision variables. The
permeability of the aquifer is calculated as a function of sand and clay permeabilities, and
sand volume fraction as an intermediate parameter in RS models.

2.1. Reservoir Process Model (RS)

A two-dimensional radially symmetric model is used to represent two-phase (super-critical
COs and brine) flow, with temperature and pressure dependent density of supercritical-CO4
(Span and Wagner, 1996), within a 250-m-thick saline storage formation, as modeled by
Zhou et al. (2008) and Buscheck et al. (2012), with the top of the storage formation located
2240 m below ground surface and bounded by 2000-m-thick caprock. The outer-lateral and
bottom boundaries are assumed to be impermeable for a no-flow condition (Figure 1la). A
240-m-thick aquifer with lumped physical properties is overlaid on the top caprock seal.
The storage formation is assumed to be homogeneous and initially saturated with brine.
Caprock permeability (zg) (see Table 1), reservoir permeability (x19), aquifer permeability
(z13), CO4 injection rate (x11), and the distance between injection field and the leaky fault
(z12), are five uncertain inputs considered in the reservoir model. Pressure and saturation
profiles (of COy and brine) at an uncertain location (@ in Figure 1a) (z12) are the outputs
from the reservoir model and inputs to fault-leakage model.

2.2. Fault-Leakage Process Model (FT)

The potential leakage of CO» and brine through a vertical fault from the saline formation
to a shallow aquifer is simulated by a two-dimensional two-phase flow and thermal model
(Sun et al., 2010) with temperature- and pressure-dependent CO» density and enthalpy
(Span and Wagner, 1996; Lu et al., 2012), and phase transition. Permeabilities and capillary-
pressure parameters of fault and caprock, and fault width, were initially believed to play
major roles in buoyancy-driven flow. From the Sobol’ sensitivity analysis (Sobol’, 1990) of
CO and brine fluxes at the outlet of fault (B in Figure 1b), we select permeabilities of
fault and caprock, as well as pressure and saturation profiles simulated from the reservoir
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model at the fault inlet, as uncertain inputs to fault-leakage model. Fluxes of CO5 and brine
at the fault outlet are outputs of fault leakage model and uncertain inputs to the aquifer
model. It is assumed that both COy and brine fluxes are so small that they do not cause a
pressure release in the reservoir subsystem. The pressure release from the reservoir model
is not simulated.

2.3. Aquifer Process Model (AQ)

A three-dimensional High Plains aquifer consisting of sand and clay (Carroll et al., 2009)
was considered to represent a typical sedimentary system that might be affected by CO5 and
brine leakage from an underlying storage reservoir. As described in Figure 1c, the model
dimension is 10000 m x 5000 m x 240 m in z, y, and z, directions. Three-dimensional
heterogeneity with binary faces (sand and clay) is characterized and represented by faces-
volume fraction and spatial correlation lengths of clay using well logs from the High Plains
aquifer and T-PROGS code (Carle, 1999), which derives transition-probability based on
conditional well logs.

Equilibrium chemistry with aqueous carbonate speciation and calcium carbonate disso-
lution and precipitation is assumed. Liquid-phase COs concentration in groundwater will
enhance calcite dissolution by the following reactions:

CO; (g) = CO2 (aq) (1)
CO; (aq) + H,O =& HCO; + H (2)
CaCOs3 (calcite) + HT = Ca’t + HCO3. (3)

These reactions will result in a change in solution pH. For the sake of methodology demon-
stration, the plume volume is defined for water with pH < 6.5 and is considered as one
measure for risk assessment. Assuming brine is dominated by dissolved sodium and chlo-
ride, the aquifer volume for TDS > 1500 mg L~! is calculated as a measure for assessing
the effect of brine leakage on groundwater. Risk profiles could be derived for other pH and
TDS thresholds.

2.4. Methodology of Uncertainty Quantification

As defined in Table 1, all inputs except x13 can freely vary over their entire ranges of
uncertainty. The corresponding uncertainty of a model output, such as CO5 and brine
leakage rate, is measured by its variance (Saltelli et al., 2008).

In Figure 2, z;, i = 1,2,---,13, are dimensions of parametric space as defined in Table 1,
RS, FT, and AQ stand for numerical models of reservoir, fault, and aquifer, respectively;
z, y, and z, are Cartesian coordinates; P is pressure; and S. and S, are COy and brine
saturation; g. and ¢, are their fluxes at the fault outlet; and x13 is an intermediate variable
defined as the logarithmic mean of sand and clay permeability

13 = T1T4 + (1 — .771)5[75 (4)

and used as a lumped aquifer permeability in the RS model with coarse aquifer grids. To
address the effect of aquifer heterogeneity on geochemical processes, sand and clay perme-
abilities are distinguished in the AQ model with a higher mesh resolution.

The statistical approximation of risk-relevant measures in terms of all uncertain param-
eters is described as

1st-order 2nd-order 3rd-order

high-order

= 3 S S A PN
y=ao+ Y awi +y > aymici+y > Y agrviweg+ - (5)
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where ao, a;, aij, aijr, and aijp... are coefficients of polynomial fitting, and ¢, j, and k
are input indices. The statistical approximation of y is also called an emulation, a response
surface, a reduced-order model (ROM), a surrogate model (Sun et al., 2012a), a system-level
model (Stauffer et al., 2009), a metamodel, proxy model, or a model of models (Razavi et
al., 2012). Response surfaces are constructed for (1) pressure and CO» and brine saturation
from RS model at a fault inlet with an unknown location, (2) CO2 and brine fluxes from
FT model at the fault outlet, and (3) aquifer volume affected by CO- and brine leakage.

The proposed global sampling method is implemented by the following steps:

1. Define parametric space R™ with parameter ranges and distributions, where m is the
number of uncertain inputs.

2. Generate N global sample points that are uniformly and log-uniformly distributed in
the m-dimensional space.

3. Assign sub-space of N sample points to physics-specific sub-models.
4. Run sub-models sequentially with propagation of system variables.

5. Construct response surfaces of system outputs in terms of direct and indirect uncertain
inputs.

6. Conduct sensitivity analysis and generate overall risk profiles.

The quality of regression is evaluated by the model coefficient of determination (Saltelli
et al., 2008)

) Yo (i — 9
R? = &= \Jim ) 6
2211 (yi — 37)2 ©

where y; and y; are simulated and emulated model results, § is the mean of simulated
results. R% € [0, 1] represents the fraction of the model output variance accounted for by
the response surface.

The constructed response surfaces are computationally efficient for emulating a greater
number of sampling points for sensitivity analysis, risk assessment, and decision optimiza-
tion.

3. Results and Discussion

Emulation is designed for modeling multi-component reactive transport, which is char-
acterized by the 12-dimensional uncertain parametric space (Table 1) and computationally
demanding simulations. We employ Latin hypercube sampling (McKay et al. 1979; Iman
et al. 1981) to generate 1000 sample points for building the NUFT models representing the
RS, FT, and AQ subsystems. Third-order response surfaces are developed from the Latin
hypercube samples for emulating (1) pressure and CO,/brine saturation at the fault inlet,
(2) CO2 and brine fluxes at the fault outlet, and (3) aquifer volume affected by CO2 and
brine leakage.

3.1. Deterministic Simulation

Sample 418 is randomly selected from 1000 sample points to demonstrate the simulation
processes and risk assessment. For the parameter values given in Table 2, the reservoir,
fault-leakage, and aquifer models are deterministic and simulated sequentially using the
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NUFT code (Nitao, 1998; Hao et al., 2012). The first three parameters (sand volume frac-
tion, correlation lengths of clay in z and z directions) are used to determine heterogeneous
structure of the shallow aquifer by using the T-PROGS code (Carle and Fogg, 1996, 1997;
Carle, 1999). The AQ-model mesh file is generated according to the sand-clay structure
(Figure 3). It is assumed that the existing fault at the distance z12 does not release reser-
voir pressure significantly. Therefore, pressure and saturation profiles along the fault are
derived by post-processing RS outputs without considering the fault explicitly in the RS
mesh file.

Figure 3. Heterogeneous aquifer model of sample 418 simulated using T-PROGS and well logs in
High Plains Aquifer. Red and blue represent clay and sand, respectively. Note that vertical scale is

exaggerated.

In the context of non-intrusive uncertainty quantification, a sample point, such as the
418th point, represents a coordinate (see Table 2) in the 12-dimensional parametric space.
The NUFT model outputs of interest are plotted in Figure 4 as functions of time. Pressure
(Figure 4a) and saturation (Figure 4b) profiles, generated by running the RS model for
sample 418, are inputs to the FT model of sample 418. The FT model of sample 418 is then
evaluated to produce CO» and brine fluxes (Figure 4c) at the fault outlet. These fluxes are
in turn fed to AQ model for predicting concentration profiles and risk measures (Figure 4c).

Table 2. System parameters of sample 418.

Param. Value Param. Value Param. Value
T 04875 [[] s 1.0139x1071% [m?] =y 5.0431x10~™ [m?]
T2 881.4815 [m] g 900.0000 [m] =1 9.7947x107 [m?]
T3 9.5250 [m] 7 1.7108 [mol kg™']  z11 73.2232 [kg s7!]
T4 3.6187x10 ! [m?] =g 4.2133x10717 [m?] 21 536.9369 [m]

x13 = 7174 + (1 — 21)T5 5.1652x 10~ [m?]
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Figure 4. Deterministic outputs of sample 418. (a) Pressure at fault inlet. (b) CO» saturation at
fault inlet. (c) CO2 and brine fluxes at fault outlet. (d) Plume volume defined by pH < 6.5 and
TDS > 1500 mg LL.

Among many other risk measures, we are interested in the total aquifer volume defined
by EPA drinking water standards in pH and TDS. As seen in Figures 5 and 6, isosurfaces
of pH = 6.5 and TDS = 1500 mg L' are derived from AQ concentration profiles, and the
volume within those isosurfaces is integrated spatially as a function of time

(7)

UpZ/U(w,y,Z)du : UtZ/U(w,y,Z)du
Q Q

pH<é.5 TDS>1500

where U, and U; are aquifer volume defined by pH < 6.5 and TDS > 1500 mg L~!, respec-
tively; Q denotes the spatial domain; and w« is the elementary volume at x, y, z. As shown
in Figure 4d, the total aquifer volume impacted by CO4 and brine leakage for pH and TDS,
respectively, becomes a risk measure as a function of time.
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To conduct uncertainty quantification and risk assessment, we repeated the same simula-
tion process for 1000 sample points in the 12-dimensional space. In Sec. 3.2 ~ Sec. 3.4, the
PSUADE code (Tong, 2005, 2010) is used for constructing response surfaces of risk-relevant
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measures and intermediate variables. We give details for using the PSUADE uncertainty
quantification library (Tong, 2005) to construct response surfaces of risk-relevant measures
and intermediate variables.

3.2. Reservoir Model Results

One of the risk measures for CO storage is pressure buildup, which could elevate the
probability of re-activating faults and cause CO> and brine leakage to groundwater aquifers
or the atmosphere. Scatter plots of the peak pressure at the fault inlet (@ in Figure 1a), from
1000 simulations, are given in Figure 7 in terms of permeabilities of groundwater aquifer,
storage reservoir, and caprock (z13, 10, zs), CO injection rate (x1;), and the distance
between the injector and fault (z;2). We observe a clear dependence of the peak pressure on
caprock permeability and a slight dependence on reservoir permeability and injection rate.
Quantitatively, we compute the Sobol’ sensitivity indices for xg, x19, 11, T12, T13 to be
[0.8390 0.0853 0.1041 0.0025 0.0000], respectively. Taking the peak pressure as an example,
the response surface is constructed using third-order polynomial regression (Eq. 5) and
verified by comparing system-level emulations with process-level simulations on prescribed
sample points in Figure 8.

357

30 o o

Peak pressure (MPa)

25

200 400 600 800 1000
Distance between injection well and fault (m)

Xg 0.8390 x,,:0.1041
X,y 0.0853 X, 0.0025
X5 0.0000

Sobol sensitivities

Permeability of aquifer (m2)

Figure 7. Scatter plots of peak pressure at fault inlet as a function of uncertain parameters.
Subplots (a), (b), and (c) show a strong, slight, and zero dependence of peak pressure on caprock
permeability (zg), reservoir permeability (z19), and lumped aquifer permeability (z13), respectively.
Subplot (d) shows a slight and positive dependence of the peak pressure on injection rate (z11).

Subplot (e) show little sensitivity of the distance between the injector and the fault (z12).

We conducted Sobol’ sensitivity analysis of pressure and CO» saturation from RS model,
as well as COy and brine fluxes from FT model and aquifer volume contaminated by CO»
and brine leakage from AQ model, the result of which is shown in Table 3. We qualitatively
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1 categorize parameter sensitivities into four groups (1) very important (>0.75), (2) important
2 (0.5~0.75), (3) insignificant (0.2~0.5), and (4) irrelevant (<0.2). Reservoir permeability is
»3  the most sensitive parameter to the pressure profile at the fault inlet in the early time (< 20
s yT), but quickly reduces its role as time progresses. By contrast, caprock permeability is an
s ingensitive parameter initially to the pressure profile, but becomes the dominant parameter
=6 in later time (> 80 yr). In the ealy stage of injection, the radial and horizontal advection from
»7  the injector, as the main transport process to spread COy plume, depends on the reservoir
»s  permeability. This explains the higher sensitivity of reservoir permeability in the early stage.
0 As COs plume spreads to a certain size, the radial expansion of COs plume becomes slower
w0 with a constant injection rate. Then, the tightness of caprock becomes a sensitive parameter.
s For COs2 saturation, reservoir permeability is the sole sensitive parameter. Since the shallow
22 aquifer is far (2000 m) from the storage reservoir, the lumped aquifer permeability (z;3)
»3 does not show any contribution to pressure and saturation profiles.
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time-included ROMs. (a) Simulation-emulation (S-E) comparison of pressure in injection period.
(b) S-E comparison of pressure in post-injection period. (c¢) S-E comparison of CO, saturation in
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injection period. (d) S-E comparison of COy saturation in post-injection period.

Since RS-model outputs, such as pressure and COz/brine saturation at fault inlet, are
time dependent, we expect to treat time as a special dimension in ROM construction. As
such, a single ROM will represent the dynamic process over the entire simulation period.
Otherwise, multiple ROMs should be constructed separately in each time interval. If an
output is a monotonic function of time, the time dimension can be added for constructing
the ROM by using polynomial fitting. Although both pressure and saturation curves are
not monotonic over 1000-year simulation time, they are monotonic in injection (¢ < 100
yr) and post-injection (¢ > 100 yr) periods. Therefore, two separate ROMs are developed,
respectively for pressure and CO. saturation, in those two periods with considering time
dimension. Comparisons between the simulated and emulated (ROMs) results are plotted
in Figure 9.

The advantage of a single ROM with time dimension over multiple ROMs in time is
ease of data processing and transferring. However, there are limits of the total number of
sample points for various response surface methods and a given computer memory. It is also
worth comparing the emulation quality of time-included ROM and time-excluded ROMs.
As shown in Figure 10, the stepwise (or time specific) ROMs agree better with simulations
than time-included ROM (Figure 9). Figure 11 indicates that the dynamic R? indices of
stepwise ROMs for both pressure and saturation profiles are preferred.
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Figure 10. Comparison of simulated and emulated pressure and CO, saturation at fault inlet
using stepwise ROMs. (a) S-E comparison of pressure in injection period. (b) S-E comparison of
pressure in post-injection period. (c) S-E comparison of CO saturation in injection period. (d) S-E
comparison of CO5 saturation in post-injection period.
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Figure 11. Comparison of R? indices. The R? indices of overall fitting for both pressure and
saturation profiles are lower than those of stepwise fitting.

Although we have used uniform and log-uniform distributions of uncertain parameters
listed in Table 1 to construct response surfaces of pressure and CO,/brine saturation at the
fault inlet, uncertainty of those outputs is reduced by using normal or log-normal distribu-
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tions for some uncertain parameters. If caprock and reservoir permeabilities take log-normal
didstriutions, such as logjprs = N(—18.5,0.5) and logigr19g = N (—12.5,0.3), and injection
rate r1; and distance between fault and injector z12 keep their uniform distributions, pres-
sure and saturation at the fault inlet at 100,000 Monte Carlo sample points are emulated
on previously constructed response surfaces. Figures 12 and 13 show the pressure and sat-
uration profiles with confidence levels.
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Figure 12. Pressure at fault inlet as a function of time for various confidence levels. The shaded
area covers one standard deviation above and below mean value.
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Figure 13. CO; saturation at fault inlet as a function of time for various confidence levels. The
shaded area covers one standard deviation above and below mean value.

Uncertainties of pressure and CO5 saturation at the fault inlet can be visualized using
probability density functions (PDFs) for given times. As shown in Figure 14, PDFs of
pressure and saturation with log-normal distribution of reservoir and caprock permeabilities
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(Figures 14a, c) display normal or near normal distributions at specified times.

15

PDFs

of pressure and saturation with log-uniformly distributed permeabilities (Figures 14b, d)
display left-skewed and flat-bimodal distributions, respectively.
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Figure 14. Time evolution of probability density distribution of pressure and CO; saturation at
fault inlet. (a) Pressure PDF with log-normal distribution of zg and z19. (b) Pressure PDF with
log-uniform distribution of xg and x19. (¢) Saturation PDF with log-normal distribution of zg and
z10. (d) Saturation PDF with log-uniform distribution of g and z,.

303

s 3.3. Fault-leakage Model Results

305 Similar to pressure and saturation profiles from the reservoir model, CO5 and brine fluxes
ws at fault outlet (@ in Figure 1b) behave non-monotonically with time. To facilitate the con-
s struction of reduced-order models, we take cumulative fluxes, which are monotonic with
ws  time, as the model output. Six uncertain parameters, (caprock, fault, and reservoir perme-
w0 abilities, xg, xg, 10, injection rate 11, distance between fault and injector x5, and lumped
s aquifer permeability x;3), contribute to CO» and brine fluxes directly and indirectly at the
su  fault output. As seen in Table 3 and Figure 15, Sobol’ sensitivity analysis indicates that
sz fault permeability most impacts the uncertainty of CO- flux, while both fault permeabil-
a3 ity and caprock permeability are equally important to brine flux. Detailed description and
s analysis of CO2 phase transition and physical properties along the fault can be found in Lu
as et al. (2012)
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Figure 15. Snapshots of COs/brine fluxes at fault outlet as functions of caprock and fault perme-
abilities. (a)(b) CO2 flux at 50 and 100 years. (c)(d) Brine flux at 50 and 100 years. White area

indicates zero flux.

Figures 16 and 17 show the cumulative fluxes of CO» and brine at the fault outlet at
various confidence levels, emulating 100,000 Monte Carlo sample points on the response
surfaces. We observe that CO, and brine flux curves are not as smooth as those of pressure
and saturation profiles in Figures 12 and 13. This may be due to uncertainties of fault and
caprock permeabilities. Figure 18 shows probability density distributions of cumulative CO»
and brine fluxes at different times.
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Figure 16. Cumulative CO- flux as a function of time at various confidence levels.
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Figure 17. Cumulative brine flux as a function of time at various confidence levels.
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Figure 18. Time evolution of probability density distributions of cumulative CO2 and brine fluxes
(kg yr—'m™2) at fault outlet. (a) PDF of CO, flux with log-normal distribution of g, g, and zy.
(b) PDF of CO4 flux with log-uniform distribution of g, x9, and x19. (c) PDF of brine flux with
log-normal distribution of xg, zg, and x19. (d) PDF of brine flux with log-uniform distribution of
Tg, Ty, and x1g.

3.4. Aquifer Model Results

To assess the risk of CO» leakage to an aquifer, we first define plume volume as a mea-
sure bounded by EPA MCL standards pH < 6.5 and TDS > 1500 mg L~=! (Eq. 7). Sobol’
sensitivity indices show that the total sensitivity of an uncertain parameter may vary over
time. Taking the pH-defined plume volume as a measure, uncertain parameters are cate-
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gorized into 4 groups, as shown in Figure 19: (1) parameters z;, i = 2, 3, 4, 5, 7, 11,
and 12 show their early-time importance, but diminish as time progresses; (2) parameters
x;, ¢ = 1, 8, 10 maintain a small, but constant role over time; (3) parameter z plays
a constant and moderate role; and (4) parameter zg keeps its increasing and dominating
contribution to the uncertainty of pH-defined volume. Although fault permeability (zg) is
not a direct input to AQ process model, its uncertainty dominates the uncertainty of AQ
model output through the source-term of CO, and brine fluxes.
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Figure 19. Sobol’ total sensitivity of aquifer volume for pH < 6.5. Red group (z1, xs, 10):
constant but minor contribution. Cyan group (z;, i = 2, 3, 4, 5, 7, 11, and 12): early-time con-
tribution. Green group (zg): constant and moderate contribution. Magenta group (z9): increasing
and dominating contribution.
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Figure 21.

To better understand the uncertainty of aquifer volume contaminated by COy and brine
leakage, we examine the time evolution of probability densities (PDFs). PDF's are computed
with the response surfaces of contaminated aquifer volume by Monte Carlo sampling using
lognormal and log-uniform distributions on the uncertain inputs 4, 5, 8, 9, and 10 (see Table
1). The PDFs of the volume defined by pH < 6.5 and TDS > 1500 mg L—* are observed to
shift toward high values and exhibit wider standard deviation as time progresses (Figures
We observe that the skewnesses of the volume distribution at most time steps
are positive and monotonically increase with time, reflecting a longer tail on the right side
of the mean value on the logarithm scale. The high values of kurtosis (100~7000) at all time

20 and 21).
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Aquifer volume contaminated by COz leakage (TDS > 1500 mg L~1).

steps indicate the “peak-like” distributions as shown in Figure 22.
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Figure 22. Time evolution of probability density distribution of aquifer volume contaminated
by CO. leakage. (a) Aquifer volume defined by pH < 6.5 and with normal distributions of z;,
i=4,5,8,9,10. (b) Aquifer volume defined by pH < 6.5 and with uniform distributions of those
inputs. (c) Aquifer volume defined by TDS > 1500 mg L~! and with normal distributions of those
inputs. (d) Aquifer volume defined by TDS > 1500 mg L.~! and with uniform distributions of those
inputs.

4. Conclusions

In this paper, we proposed a global sampling method and developed an integrated
simulation-emulation system to study uncertainty propagation through physics-specific sub-
systems and assess leakage-relevant risk profiles for CO- geological sequestration. For
demonstrative purposes, we considered hypothetical reservoir and fault subsystems and a
realistic aquifer with multiple geological realizations, which are conditional to wellbore logs
in High Plains aquifer. Parameter uncertainties and uncertainty due to aquifer heterogeneity
are parameterized in three physics-specific simulations. Pressure buildup in storage reser-
voir, CO> and brine leakage rates through fault, and aquifer volume contaminated by CO-»
and brine leakage are considered as risk measures. Uncertainties of these risk measures are
quantified as functions of uncertain parameters. Key findings in this paper are summarized
as the following:

1. Uncertainty quantification and risk assessment of CO2 geologic sequestration can be
conducted on reduced-order models, which are developed from computationally ex-
pensive simulations in the space of uncertain parameters.

2. Pressure buildup in reservoir storage is sensitive to reservoir and caprock permeabili-
ties. CO2 saturation mainly depends on reservoir permeability.

3. Due to CO; phase change and buoyant flow, CO- leakage rate though fault mainly
depends on fault permeability. In contrast with CO, leakage rate, other uncertain
parameters, such as reservoir, caprock, and aquifer permeabilities, injection rate, and
the distance between fault and injector, all contribute to brine leakage rate.
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4. Contaminated aquifer volume is evaluated from AQ model outputs by using EPA
drinking water standards pH=6.5 and TDS = 1500 mg L~3. The uncertainty of pH-
defined volume mainly results from the uncertainty of fault permeability. Although
the fault permeability is an indirect input to AQ model, its uncertainty is propagated
to AQ model through FT model output, CO leakage rate.

5. Material volume fraction and spatial correlation lengths, which determine the hetero-
geneity of the High Plains aquifer, control the plume shape of pH- and TDS-defined
aquifer volume. A small vertical correlation length and a long horizontal correlation
length prevent CO» release to atmosphere.

6. Compared to local-system sampling, relationship between risk measures and indirect
inputs can be developed by using the global sampling. Otherwise, it is difficult, at least
tedious, to parameterize the time-dependent CO, and brine leakage rates as uncertain
inputs to AQ models.

7. In the parametric space of FT models, there is a hyper-dimensional and time-dependent
isosurface, which divides leaky and safe domains. Within the leakage domain, CO,
and leakage rates are provided with probability distribution.

8. Time can be considered as a special dimension in parametric space to use PSUADE
for constructing response surfaces (ROMs) of system outputs, which are monotonic
functions of time. However, stepwise ROMs without considering time dimension better
represent physical systems than the overall, but single, ROM including time dimension.

Assessment of prediction uncertainty and uncertainty propagation due to uncertain model
inputs and geologic structure is a part of risk assessment for CO> geologic sequestration.
We have demonstrated the application of PSUADE code for sampling, response-surface
construction, and sensitivity analysis. By using T-PROGS code, we described the qualita-
tive geologic structure by using quantitative uncertain parameters (material volume frac-
tion, spatial correlation lengths) and further studied the impact of aquifer heterogeneity on
COs/brine leakage-relevant risk profiles.

This work is limited to non-intrusive (sampling-based) schemes. For the simplicity in
coupling with deterministic simulation codes in different modules, sampling-based schemes
require a minimal coding effort. However, each simulation code is treated as a block box
and uncertainty propagation is only measured through input-output statistics. To track
uncertainty propagation through governing equations within a code, intrusive UQ methods
are necessary (Chen et al., 2012).
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